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LETTER TO THE EDITOR

Phase-driven current and quantum interference in the
quantum Hall regime of a narrow two-dimensional
electron gas

Vipin Srivastava
School of Physics, University of Hyderabad, Hyderabad-500 134, India

Received 7 August 1990

Abstract. Novel periodic oscillations of magnetoresistance observed in a recent quantum
Hall effect experiment on a narrow two-dimensional sample have been explained on the
basis of a Josephson-type effect. The calculated values of the period of oscillation in the
regions of plateaux 2 and 4 agree excellently with the measured values.

Some time ago it was suggested by this author that in a narrow two-dimensional electron-
gas (2DEG) system subjected to the quantum Hall conditions, a phase-driven alternating
current (AC) should flow in the direction transverse to that of the system current [1]. We
show here that the prediction of this Josephson-type effect in the quantum Hall regime
is confirmed by a recent experimental result of Mottahedeh et af [2]. It has already been
shown that the quenching of the Hall effect in quasi-1D systems reported by Roukes
et al [3] is the low-frequency manifestation of the above mentioned Josephson-type
effect {4].

Under quantur Hall conditions the system current in a 2DEG consists of two ‘edge
currents’ flowing parallel and anti-parallel to, say, the x-direction. If the 2DEG is suf-
ficiently narrow in the y-direction {the magnetic field B being in the z-direction) then
the two edge currents come close to each other and may couple weakly. In the presence
of long-range phase order, it was shown that the phase slip between the wavefunctions
of the edge currents {represented as 1 ~ C(r)e'®, a being the phase) can give rise to an
AC in the y-direction [1]. The Hall voltage, V} (in the y-direction), causes the phase
slippage with frequency [1]

¢y = 27/ @, ' (1)

where @, is the phase difference between the two edge currents and ®, = kc/e is the
flux quantum. The acis given by [1]

J':JcSin(plZ (2)
where the current density J is the critical value of J at ¢, = 7/2. Suppose the narrow
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Figure 1. The narrow 2DEG subjected to quantum Hall conditions: the edge curcents are
shown to be very narrowly separated from each other by the Hall voltage across a region of
width w. Coupling of the edge currents gives rise to the AC which flows over a region of width
A/2 (1 being the wavelength of Ac), where /2 > w.

region that separates the edge currents is of width w (figure 1}; then the Ac flows over a
region about A/2 wide if 1/2 = w for the given Hall voltage Vy; 4 is the wavelength of
the AC:

A= Oy /Vi. (3)

The Vy, is developed across the region of width w to stop the flow of electrons from one
edge current 1o the other under the influence of a Lorentz force.

Mottahedeh et al [2] carried out the quantum Hall effect (QHE) experiments on
narrow 2DEG systems varying the width over a range of about 1 pm down t00.4 um. The
distance between the voltage probes in the x-direction was about 100 um. The mobility
was about 6400 cm? V™' 57!, Asthe system was narrowed below 1 um two features began
to show up:

(i) in a clear departure from the standard QHE result the magnetoresistance R,
became non-zero in the ranges of B where the Hall resistance Ry (=R,,) showed
plateaux;

(ii) for systems less than 0.6 um wide very prominent and periodic oscillations
developed in the minima of R,,—the period of oscillations was AB = 0,065 T for Bs
corresponding to a plateau i = 2 and was reduced by a factor of two to 0.033 T in the
region of i = 4, The oscillations were not seen for higher values of i,

Result (i) clearly indicates that the transfer of electrons between the two edge
currents gives rise to a non-zero V., even in the region where V, (=V,,) has plateaux,
While under ideal QHE condittons in wide samples the system current [, is driven entirely
by V., (and V_, does not develop), here /, is driven by both V,, and V, such that VilL,
remains constant. The transfer of electrons between the edge currents can arise due to
elastic scattering from impurities as well as due to the phase-driven Ac discussed here.
Result (ii), it is argued here, arises out of quantum interference that occurs when the
edge currents are mixed by the AcC.

A number of studies have recently been devoted to quantum interference effects in
narrow 2DEG systems [5]. In almost alt of these the communication between the edge
currents is taken as having been established by scattering from impurities or by resonant
tunnelling through a bound state on an impurity. Such considerations cannot explain
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the periodic oscillations because more than one such event involving impurities of
different sizes will erode a well defined periodicity.

The current-carrying electrons move in opposite directions along the edge. Some of
these go back and forth between the edge currents under the influence ‘of the phase
slippage and end up moving in closed loops. Assuming that when the electrons enter the
sample they all have the same phase at all times, that the elastic scattering events are
too few and too weak to make an appreciable change in the trajectories of the electrons,
and that the inelastic scattering events are negligible in the mK region of temperature
in which the experiments are done, we can take the areas enclosed in each loop to be
the same. As the electrons move along the closed trajectories their phase changes due
to the magnetic field B, and the Hall voltage V. We will show that the phase difference
@12 between the edge currents 1 and 2 changes by 2 as the electrons go around in aloop
once. This enables us to calculate A B, the periodicity of the observed oscillations in R,,,.
The calculated values of AB corresponding to plateaux i = 2 and 4 agree exactly with
the observed values.

We will analyse the variation in the quantum-mechanical phase of the current-
carrying electrons after they enter into the Hall device. First we will work out the phase
change introduced by B and then we will include the effect of V.

Taking B, which is in the z-direction, to be uniform across and around the sample,
we choose a convenient gauge in which the vector potential has no y-component and is
given by A = [4,(y), 0, 0}:

A.(y)= By —wsSysw (4)

where y = Oisalong the middle of the device. Nowrecall the pauge-invariance exptession
relating the phase gradient to the canonical momentum,

Va = 2mu [k + (e/hc)A. _ (5)

The phase difference between points @ and b on the same edge carrent is

2m [t e [*?
af(b)—-af(a)=—£-avs-dw-%EJ;A-dw. (6)
- Note that since A and p, have only x-components, it is clear that if the points 2 and b
have the same x-coordinate then they will have the same phase (for x, = x,, dw will
always be perpendicular to the x-direction, so the above integrals vanish). Consequently
on each side of the device we have from (6)

a;(x, ~ ©) = a,(x, ~A/4) = a; (x, ~w/2)
ay(x, ) = oy (x, A/4) = @y (x, w/2).

The subscripts 1 and 2 represent the two sides of the device. The z-variable is ignored
since the phase is independent of z in a 2DEG lying in the xy plane,

The above analysis helps in calculating the phase difference across the device
(between the two sides) which is given by

Y

e (2
Pi() = ey}~ e =)~ [ A-dw. ®)
1

Since the AC is flowing over a width of 1/2 about the y = 0 line, we need to calculate
@12{x) between points lying on two parallel lines A/4 away from the y = 0 axis on either
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side of it; moreover in the gauge we have chosen, A is perpendicular to dw, so the integral
in (8) vanishes and we need only calculate

P12 = a'2(x’/1/4) —ay(x, _;"/4) = (a'Z(xr }"/4) - a,(0, 3'/4))
- (al(x' —}"/4) - a1(01 _""/4)) + ‘P?Z (9)

where @, = a,(0, 1/4) — &, (0, —1/4). Using (6) we obtain

w20 1) = a0, 1) = [ (o acr [ aamar aon)
i3 L1}
2mr e [*
1 x,-H) = 0,4 = [Co. e jo A (-A/4)dx. (106)

The velocities, v,, of charge carriers are equal but opposite at two points located
symmetrically about y = 0 for a fixed x. Taking A,(£4/4) from (4) we get

q:rlz=rp?2—(4m/ﬁ)vxx+2n3(ﬁ./2)x/¢u. (11)

This gives the x-dependence of the phase difference between two lines that are 1/2 apart
and lie in the two edge currents, arising due to the currents flowing with velocity o,
(second term on RHS) and due to the magnetic field B (third term on RHS).

However, an additional change, with x, in the phase difference, @,,, occurs due to
the presence of Vi, across the width w as an electron enters into the edge current 1 and
moves a distance x. If the distance x is travelled in time ¢, then the total change in the
phase difference that occurs between the above mentioned two lines as an electron
moves a distance x is

@ux, 0 — % =—~(dm/R)o.x + 2aBA/2)x/ Py + eVit/h (12a)
@) - @b = —(dm/h)o.x + (2/®p) (BA/2 + Vig/v,)x. (12b)

The first term on the right-hand side of (12b) makes a negligible contribution compared
with that made by the second term—e.g. for a distance x, ~0.5 um (calculated later),
over which the second term contributes s, the contribution of the first term is smaller
by more than two orders of magnitude; we will ignore this term. To estimate ¢ 5(x) we
will take the classical value for v, which is Vy,/wB. Taking w =~ 1/2, we get

®(x) = @ + (47/®o)BAx/2. (13)

Now we can calculate the @, that develops as certain electrons complete a loop after
the AC is set up between the edge currents.

Suppose @3, = x/2 when x = 0, i.e., when an electron enters at the left-hand end of
the device into the edge current 1. Then ¢, = &/2, and according to (2) a maximum
current of magnitude J, is flowing from side 1 to side 2 [1]. In this situation, since the
electrons are flowing from side 2 to side 1, the electron that entered at x = O will continue
to move in the x-direction. As it is moving, ¢, is continuously changing in accordance
with equation (13). When @, becomes 3:7/2, J would be ~J, i.e., a maximum current
of magnitude J. would flow from side 2 to side 1. At this stage the electron under
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consideration would probably move from edge cusrrent 1 to 2t. Up until now @, has
changed by z. On joining the edge current 2 the electron moves in the negative x-
direction and if v, is the same as it was in the edge current 1, it will rise to x = 0 when J
will become +J, and will return to where it originally started, thus completing the loop.
@1z has by now changed by 2., alternatively we can say that the electron has gone back
to the origin undergoing a phase change of 27 relative to the freshly injected electrons
at this instant whose phase is /2.

Tocalculate A B, the periodicity of the oscillations under consideration, suppose that
there are # closed loops placed side by side along the length L of the system. In this
situation the net AC flowing between the edge currents will be zero because J = J atx =
0,andatx = L J = +J_or —J, (depending on whether niseven or odd). The net AC will
be zero again as n goes to n + 1 for B, enclosed in the rectangle A/2 X L, increasing; in
this case J;, at x = L, will change its sign compared with whatever it was for n. The
change in B that takes » to n + 1 is, in fact, the AB we want to calculate—this is the
separation between two consecutive minima of R,,.. Whenever the net AC is zero, the
system current in the longitudinal direction will be at its maximum and therefore the R,
will be at its minimum. When the Ac is non-zero the magnitude of the system current is
lowered, which makes R,, larger compared with its value when Ac was zero. Thus as the
Acpscillatesbetweenzero and £ J, the R . oscillates between its minimum and maximum
values. The separation, AB, between two consecutive minima of R,, therefore cor-
responds to two consecutive zeros of AC corresponding to the nand n + 1 loops.

Atagiven B, that gives rise to n loops fitted in the length L, the change in phase over
the length L will be nr as seen above. Then according to equation (13)

(4n/®y)B(A/2)L = nn : (14)
and when B increases by AB, making » increase ton + 1,

(47/®)(B + ABY(A2)L = (n + D). (15)
Therefore,

AB =&y /20L = V2L (16)
using A from equation (3). For plateaui = 2,V = 12.9065 x 107® V,so,for L = 100 um,

AB=0.0045T

which is in excellent agreement with the observed value of 0.065 T. Further, the Vi
corresponding to i = 4 is exactly half of its value for i = 2, so the AB in the region of
i = 4 should be exactly one half of its value for i = 2, i.e., it should be about 0.0323 T,
again in excellent agreement with the experiment. Thus, the V-dependence of AB as
found in equation (16) is in conformity with the experiment.

The excellent agreement of the calculated and the measured values of AB renders
undoubtable support to the proposed existence of phase-driven AC in the narrow quan-
turn Hall samples. But there is a need to review it in the light of the assumption
(ii) (indicated at the beginning) which is central to the observation of the periodic
oscillations. There are two things to be noted in this connection:

t The transverse current from side 2 to side 1 will actually start flowing as soom as ¢ ; exceeds the value x,
and with this the probability for an electron to move from edge current 1 to 2 will become non-zero. But this
probability will be maximum when the transverse current reaches its maximum, We have taken these points
of maximum probability of the transition between the two edge currents as the turning points for the formation
of the loops.
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(i) the dimensions of a loop: the x-dimension, which is the same as the distance over
which ¢, changes by s, is given by

4xB(A/)x/®y = 7 x =% 2BL=Vy/2B=0.5um

where V, corresponds to plateau =2, and the y-dimension, namely 1/2, is
~0.00015 pym; and
(ii) for the mobility of the given sample, the elastic mean free path is about 0.05 um

[6).

Assuming that the impurities (the elastic scattering centres) are distributed
uniformly, the narrow strip of dimensions 100 gm X 0.00015 um over which the AC is
flowing may happen to lie with respect to the array of impurities in such a way that the
number of impurities encountered per loop may be any number between the minimum
of zero and the maximum of ten. It is hard to judge if an average of ten collisions or so
per loop is too little or is large enough to make a substantial change in the trajectory of
a loop, because we do not know anything about the strength of the scatterers. We
can, though, easily say that in the sample whose results we have discussed here, the
100 um % 0.00015 um strip lies such that either no impurity falls on it, or very few
impurities of negligibly weak strength are encountered.

Thanks are due to M Pepper and R Mottahedeh for discussing their results with me
before publication. Hospitality at the Cavendish Laboratory (Cambridge, UK} where
this work was begun is gratefully acknowledged.
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